MLR Models: Estimation & Inference

- Comparison of SLR and MLR Estimation & Inference
- ... What's New?... Not Much!
- SLR & MLR Standard Errors: Not so different after all!
- ... An Example

SLR/MLR Compare: Estimation & Inference I

	SLR	MLR	
Those (S/M)LR AssumptionsSLR.1: Linear Model $Y = \beta_0 + \beta_1 X + U$		MLR.1: Linear Model $Y = \beta_0 + \beta_x X_i + \beta_z Z_i + + U_i$	
	SLR2: Random sampling	MLR2: Random sampling	
	SLR3: Sampling variation in the independent variable	MLR3: No perfect collinearity	
	SLR.4: Zero Conditional Mean E(U X = x) = 0 for any x	MLR.4: Zero Conditional Mean $E(U \mid x, z,) = 0$ for any x, z,	
If these hold:	LUE: OLS is a LUE	LUE: OLS is an LUEs	
	But OLS is not alone!	But OLS is not alone!	

SLR/MLR Compare: Estimation & Inference II

	SLR	MLR		
Add one more assumption	SLR.5: Homoskedastic errors (conditional on x)	MLR.5: Homoskedastic errors (conditional on the x's, z's,)		
If all 5 conditions hold:	$Var(B_1 \mid x's) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$	$Var(B_x \mid x, z) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2} VIF_x$		
	$=\frac{\sigma^2}{(n-1)S_{xx}}$	$=\frac{\sigma^2}{(n-1)S_{xx}}VIF_x$		
Variance Inflation Factors (VIF)		$VIF_x = \frac{1}{1 - R_x^2}; R_x^2 = 1 - \frac{1}{VIF_x}$		
	$\hat{\sigma}^2 = \frac{SSR}{n-2} = MSE$	$\hat{\sigma}^2 = \frac{SSR}{n - (k + 1)} = MSE$		
	MSE unbiased estimator of σ^2	MSE unbiased estimator of σ^2		
Gauss-Markov Thm.	SLR.1-SLR.5 \rightarrow BLUE	MLR.1-MLR.5 \rightarrow BLUE		

SLR/MLR Compare: Estimation & Inference III

	SLR	MLR	
SRF (Sample Regression Function)	$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$	$\hat{y} = \hat{\beta}_0 + \hat{\beta}_x x + \hat{\beta}_z z + \dots$	
PRF (Population Regression Function)	$E(Y \mid X = x) = \beta_0 + \beta_1 x$	$E(Y \mid x, z,) = \beta_0 + \beta_x x + \beta_z z +$	
2. Inference			
Add one last Assumption: Distribution of Y_i	SLR.6: $U_i \sim N(0, \sigma^2)$ and indept. of X	MLR.6: $U_i \sim N(0, \sigma^2)$ and indept. of the RHS variables	
Degrees of Freedom	n-2	n-k-1	
Distribution of Estimator:	$B_1 \sim N(\beta_1, \operatorname{var}(B_1))$, where $\operatorname{var}(B_1) = \frac{\sigma^2}{(n-1)S_{xx}}$	$B_x \sim N(\beta_x, \operatorname{var}(B_x))$, where $\operatorname{var}(B_x) = \frac{\sigma^2}{(n-1)S_{xx}} VIF_x$	

SLR/MLR Compare: Estimation & Inference IV

	SLR	MLR	
Standard Deviation of B_1	$sd(B_1) = \frac{\sigma}{S_x\sqrt{n-1}}$	$sd(B_1) = \frac{\sigma}{S_x\sqrt{n-1}}\sqrt{VIF_x}$	
Standard Error of B_1 (est. of $sd(B_1)$)	$se(B_1) = \frac{RMSE}{S_x\sqrt{n-1}}$	$se(B_x) = \frac{RMSE}{S_x\sqrt{n-1}}\sqrt{VIF_x}$	
Distribution of Estimator: t statistic	$\frac{B_1 - \beta_1}{se(B_1)} \sim t_{n-2}$	$\frac{B_x - \beta_x}{se(B_x)} \sim t_{n-k-1}$	

SLR/MLR Compare: Estimation & Inference V

	SLR	MLR	
Confidence Intervals (C is confidence level)	$\begin{bmatrix} B_1 \pm c \ se(B_1) \end{bmatrix},$ $P[\mid t_{n-2} \mid < c) = C$	$\begin{bmatrix} B_x \pm c \ se(B_x) \end{bmatrix},$ $P[t_{n-k-1} < c) = C$	
Null Hypothesis:	$H_0: \beta_1 = 0$	$H_0: \beta_x = 0$	
t stat (under H0)	$ts tat = \frac{B_1}{se(B_1)} \sim t_{n-2}$	$tstat = \frac{B_x}{se(B_x)} \sim t_{n-k-1}$	
p value (for given data set and OLS estimates)	$p = P[t_{n-2} > tstat_{\hat{\beta}_1})$	$p = P[t_{n-k-1} > tstat_{\hat{\beta}_x})$	
Hypothesis Test (for given) :	Reject H ₀ if $\left t_{\hat{\beta}_1} \right > c$ or if $p < \alpha$	Reject H ₀ if $\left t_{\hat{\beta}_{i}} \right > c$ or if $p < \alpha$	

SLR & MLR Standard Errors: Not so different after all!

• At first glance the SLR and MLR standard error formulas appear to differ slightly, with a $\sqrt{VIF_x}$ adjustment included in the MLR formula:

• SLR -
$$se_{\hat{\beta}_x} = \frac{RMSE}{\sqrt{\sum (x_i - \overline{x})^2}} = \frac{RMSE}{S_x \sqrt{n-1}}$$

• MLR - $se_{\hat{\beta}_x} = \frac{RMSE}{\sqrt{\sum (x_i - \overline{x})^2}} \sqrt{VIF_x} = \frac{RMSE}{S_x \sqrt{n-1}} \sqrt{VIF_x}$

• But in fact, as you'll see below, both expressions can be rewritten as: $se_{\hat{\beta}_x} = \frac{RMSE}{\sqrt{SSR_x}}$, where

 SSR_x is the SSR from the collinearity regression in which the RHS variable *x* has been regressed on the other RHS variables.

MLR Standard Errors: An Example

	Full Model (1) rtotgross	(2) wk1	inearity Regr (3) wk2	essions (4) wk3	•	<i>wk</i> 1:	$se_1 = \frac{RMSE}{\sqrt{SSR_1}} = \frac{17.38}{\sqrt{471,875}} = .02530$
wkl	0.540*** (0.0253)		0.261*** (0.00234)	-0.115*** (0.00336)	•	wk?·	$s_{e} = \frac{RMSE}{RMSE} = \frac{17.38}{17.38} = 0.7609$
wk2	0.745*** (0.0761)	2.361*** (0.0212)		0.792*** (0.00603)	-	WR 2.	$\sqrt{SSR_2}$ $\sqrt{52,173}$.07005
wk3	4.778*** (0.0798)	-1.146*** (0.0334)	0.872*** (0.00664)		•	wk3:	$se_3 = \frac{RMSE}{\sqrt{SSR_3}} = \frac{17.38}{\sqrt{47,388}} = .07984$
_cons	-0.601** (0.227)	0.110 (0.102)	0.0817* (0.0340)	0.287*** (0.0323)			
N R-sg rss (SSR)	7730 0.921 2,333,804 <u>17.38</u>	7730 0.886 <u>471,875</u> 7.815	7730 0.959 <u>52,173</u> 2.598	7730 0.908 <u>47,388</u> 2.476			Dov Office Moie
<u>Standard (</u> * p<0.05,	errors in paren ** p<0.01, ***	theses p<0.001					BUX UNICE MUJU by IMDbPro